## ESTAR <br> INTERVENTION



## Tier 2 Mathematics Intervention

Module: Fraction Models (FM)

## Teacher Display Masters



## The Meadows Center

FOR PREVENTING EDUCATIONAL RISK THE UNIVERSITY OF TEXAS AT AUSTIN COLLEGE OF EDUCATION

Mathematics Institute for Learning Disabilities and Difficulties

## www.meadowscenter.org

## O2012 University of Texas System/Texas Education Agency

These materials are copyrighted © by and are the property of the Texas Education Agency and the University of Texas System and may not be reproduced or distributed without their written permission, except by Texas public school educators under the following conditions:

1. Any portion reproduced or distributed is used exclusively for nonprofit educational purposes in Texas.
2. No monetary charge is made for the reproduced materials, any document containing them, or any activity at which they are distributed; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.
3. No modifications or changes are made to the materials by anyone without the express written permission of the University of Texas System and the Texas Education Agency.

To obtain a license to reprint large quantities, or to use the materials in a manner not specified above, contact copyrights@tea.state.tx.us


3

Equal Share:

Module FM
Lesson 1
Modeled Practice \#1 Key
Jasai and Markesha are sharing 1 chocolate bar. If they
share the chocolate bar equally, how much will each of
them receive?

Equal Share: one-half of a chocolate bar


Find the equal share using fraction bars.
1.) 8 friends share 1 chocolate bar equally.


Equal share: $\qquad$
2.) 4 friends share 1 sandwich equally.


Equal share: $\qquad$

Find the equal share using fraction bars.
1.) 8 friends share 1 chocolate bar equally.


Equal share: one-eighth of a chocolate bar
2.) 4 friends share 1 sandwich equally.


Equal share: one-fourth of a sandwich

Find the equal share using fraction bars.
1.) 2 friends share 1 chocolate bar equally.


Equal share: $\qquad$
2.) 4 friends share 1 bar of clay equally.

Equal share: $\qquad$
3.) Choose the sharing situation that would have an equal share of oneeighth of a cake.

A 4 friends share 1 cake equally.
B 2 friends share 1 cake equally.
C 8 friends share 1 cake equally.
D 1 friend eats 8 cakes.

## Module FM <br> Lesson 1 Independent Practice Key

Find the equal share using fraction bars.
1.) 2 friends share 1 chocolate bar equally.


Equal share: one-half of a chocolate bar
2.) 4 friends share 1 bar of clay equally.


Equal share: one-fourth of a bar of clay

## Module FM <br> Lesson 1 Independent Practice Key

3.) Choose the sharing situation that would have an equal share of oneeighth of a cake.
A 4 friends share 1 cake equally.
B 2 friends share 1 cake equally.
C 8 friends share 1 cake equally.
D 1 friend eats 8 cakes.

## Module FM <br> Lesson 2

4 children share 1 apple equally. How much does each child get?


Equal share: $\qquad$

## Module FM <br> Lesson 2 Engaged Practice Key

4 children share 1 apple equally. How much does each child get?


Equal share: one-fourth of an apple

qually. How
sandwich e friend eat?

On a field trip, 3 friends
much of the sandwich

Equal Share:
On a field trip, 3 friends shared 1 sandwich equally. How
much of the sandwich did each friend eat?

Equal Share:
On a field trip, 3 friends shared 1 sandwich equally. How
much of the sandwich did each friend eat?

Equal Share: one-third of a sandwich
On a field trip, 3 friends shared 1 sandwich equally. How
much of the sandwich did each friend eat?

Equal Share: one-third of a sandwich
$\begin{array}{r}\text { Module FM } \\ \text { Lesson 2 }\end{array}$
3 more friends are sharing 1 sandwich. How much of the
sandwich does each friend receive?

Module FM
Lesson 2
Modeled Practice \#2 Key
3 more friends are sharing 1 sandwich. How much of the
sandwich does each friend receive?


Find the equal share using fraction bars.
1.) 3 monkeys share 1 banana equally.


Equal share: $\qquad$
2.) 6 monkeys share 1 rope equally.


Equal share: $\qquad$
The Meadows Center for Preventing Educational Risk-Mathematics Institute

Find the equal share using fraction bars.
1.) 3 monkeys share 1 banana equally.


Equal share: $\qquad$ one-third of a banana
2.) 6 monkeys share 1 rope equally.


Equal share: $\qquad$ one-sixth of a rope


The Meadows Center for Preventing Educational Risk-Mathematics Institute

Find the equal share using fraction bars.
1.) 2 kids share 1 cookie bar equally.


Equal share: $\qquad$
2.) Choose the equal sharing situation that would have an equal share of one-fourth of a pizza.

A 4 friends share 1 pizza
B 2 friends share 1 pizza
C 1 friend eats 4 pizzas
D 4 friends share 1 pizza

## Module FM <br> Lesson 2

Find the equal share using fraction bars.
3.) 6 friends share 1 cake equally.


Equal share: $\qquad$
4.) 3 friends share 1 stick of gum equally.


Equal share: $\qquad$
5.) Choose the equal share when 3 people share 1 cupcake equally.

A 3 cupcakes
B one-third of a cupcake
C two-thirds of a cupcake
D one-third of a sandwich


Find the equal share using fraction bars.
1.) 2 kids share 1 cookie bar equally.


Equal share: one-half of a cookie bar
2.) Choose the equal sharing situation that would have an equal share of one-fourth of a pizza.
A 4 friends share 1 pizza
B 2 friends share 1 pizza
C 1 friend eats 4 pizzas
D 4 friends share 1 pizza

## Module FM <br> Lesson 2 Independent Practice Key

Find the equal share using fraction bars.
3.) 6 friends share 1 cake equally.


Equal share: one-sixth of a cake
4.) 3 friends share 1 stick of gum equally.


Equal share: one-third of a stick of gum

## Module FM <br> Lesson 2 Independent Practice Key

5.) Choose the equal share when 3 people share 1 cupcake equally.

A 3 cupcakes
(B) one-third of a cupcake

C two-thirds of a cupcake
D one-third of a sandwich


Module FM
Lesson 3
Modeled Practice \#1 Key
3 friends share 1 sandwich equally. How much of a sandwich
does each friend get?




Find the equal share.
1.) 4 students share 1 cake equally. How much of the cake does each student get?

2.) 6 people share 1 pan of brownies equally. How much of the pan does each student get?


Find the equal share.
1.) 4 students share 1 cake equally. How much of the cake does each student get?

2.) 6 people share 1 pan of brownies equally. How much of the pan does each student get?


Find the equal share using fraction bars.
1.) 3 people share 1 strip of bacon equally.


Equal share: $\qquad$

Find the equal share using the rectangle provided.
2.) 2 monkeys share 1 banana equally.


Find the equal share using the rectangle provided.
3.) 4 people share 1 sandwich equally.


Choose the letter that shows the equal share.
4.) 6 friends share 1 cake equally.

C

B

D


Find the equal share using fraction bars.
1.) 3 people share 1 strip of bacon equally.


Equal share: one-third or $\frac{1}{2}$ of bacon strip

Find the equal share using the rectangle provided.
2.) 2 monkeys share 1 banana equally.

one-half or $\frac{1}{2}$ of a banana

## Module FM <br> Lesson 3 Independent Practice Key

Find the equal share using the rectangle provided.
3.) 4 people share 1 sandwich equally.


Choose the letter that shows the equal share.
4.) 6 friends share 1 cake equally.
A

C

B

D


Draw lines to divide and share the granola bar.

4 friends share 1 granola bar equally.


Divide and shade the rectangle to show the equal share.

Equal share:


STOP

Draw lines to divide and share the granola bar.

4 friends share 1 granola bar equally.


Divide and shade the rectangle to show the equal share.




3



## $\stackrel{n}{2}-0$



3


Using the picture provided, find the equal share.
1.) 3 friends share 2 apples equally. How much does each friend receive?


Equal share: $\qquad$
2.) 4 friends share 3 sandwiches equally. How much does each friend receive?


Equal share: $\qquad$

Using the pictures provided, find the equal share.
1.) 3 friends share 2 apples equally. How much does each friend receive?


Equal share: two-thirds or $\frac{2}{3}$ of the apples
2.) 4 friends share 3 sandwiches equally. How much does each friend receive?


Equal share: three-fourths or $\frac{3}{4}$ of the sandwiches

Using the picture provided, find the equal share.
1.) 4 glasses share 1 bottle of water equally.


Using the picture provided, find the equal share.
2.) 6 people share 2 candy bars equally.


Equal share: $\qquad$
3.) 3 people share 2 pies equally.


Equal share: $\qquad$

Choose the equal share.
4.) 8 people share 3 vegetable pizzas equally.


D


Using the picture provided, find the equal share.
1.) 4 glasses share 1 bottle of water equally.


## Module FM <br> Lesson 4 <br> Independent Practice Key

Using the picture provided, find the equal share.
2.) 6 people share 2 candy bars equally.


Equal share: two-sixth or $\frac{2}{6}$ of the candy bars
3.) 3 people share 2 pies equally.


Equal share: $\qquad$


Choose the equal share.
4.) 8 people share 3 vegetable pizzas equally.
A



D


## Module FM <br> Lesson 5

Find the equal share.
4 people share 2 mini cupcakes equally.


Equal share: $\qquad$

## Module FM <br> Lesson 5 Engaged Practice Key

Find the equal share.
4 people share 2 mini cupcakes equally.


Equal Share:

Module FM
Lesson 5
Modeled Practice \#1 Key

Equal Share: $\frac{1}{3}+\frac{1}{3}=\frac{2}{3}=$ of a brownie
(100)
Module FM
Lesson 5
Modeled Practice \#2 Key

4 friends share 3 taffy squares equally. How much does each friend receive?

Taffy Square 1

## Taffy Square 3

Taffy Square 3


Find the equal share.
1.) 6 people share 3 sandwiches equally. How much does each person receive?

2.) 8 friends share 2 pizzas equally. How much does each friend get?


Equal share:


Find the equal share.
1.) 6 people share 3 sandwiches equally. How much does each person receive?

2.) 8 friends share 2 pizzas equally. How much does each friend get?

1.) 4 monkeys share 3 bananas equally.


Equal share:

$\qquad$
2.) 4 children share 2 waffles equally.


Equal share:

The Meadows Center for Preventing Educational Risk—Mathematics Institute INTERVENTION The University of Texas at Austin ©2012 University of Texas System/Texas Education Agency

Find the equal share.
3.) 3 friends share 2 pancakes equally.


Equal share:


Choose the equal share.
4.) 8 workers share 5 sandwiches equally.

A |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

B

C

$\square$

1.) 4 monkeys share 3 bananas equally.

2.) 4 children share 2 waffles equally.


Equal share:


## $\frac{2}{4}$ of a waffle

## Module FM Lesson 5 Independent Practice Key

Find the equal share.
3.) 3 friends share 2 pancakes equally.


Equal share:


$$
\frac{1}{3}+\frac{1}{3}=\frac{2}{3} \text { of a pancake }
$$

Choose the equal share.
4.) 8 workers share 5 sandwiches equally.


Write the fraction for the part shaded.


Shade the model to represent the fraction.

6.) $\frac{2}{6}$


Write the fraction for the part shaded.


Shade the model to represent the fraction.
5.) $\frac{3}{8}$

6.) $\frac{2}{6}$



The whole has $\qquad$ cubes: $\frac{\square}{\square}$ of the cubes make up the whole.

$\qquad$ out of $\qquad$ are $\qquad$ $: \frac{\square}{\square}$ of the cubes are




The whole has $\qquad$ shapes: $\frac{\square}{\square}$ of the shapes make up the whole.



The whole has $\quad 8 \quad$ shapes: $\frac{8}{8}$ of the shapes make up the whole. 3 out of $\frac{8}{3}$ are orange $: \frac{\boxed{2}}{\frac{8}{8}}$ of the cubes are orange $\left[\right.$ out of 8 are_ blue $: \frac{\boxed{5}}{\boxed{8}}$ of the cubes are_ blue




The whole has $\frac{4}{4}$ shapes: $\frac{\boxed{4}}{\boxed{4}}$ of the shapes make up the whole.
1 out of $\frac{4}{1}$ are $\_\frac{\boxed{1}}{\boxed{4}}$ suns of the shapes are
3 out of $\frac{4}{4}$ are moons $: \frac{\boxed{y}}{\boxed{4}}$ of the shapes are moons

Write a fraction for each set.
1.) John and Mariel visited a farm on a class trip. They saw 2 pigs and 6 chickens. What fraction of the animals were pigs? What fraction of the animals were chickens?








____ out of ____ are pigs: $\frac{\square}{\square}$ of the animals are pigs

2.)


Write a fraction for each set.
3.)


Write a fraction for each set.
1.) John and Mariel visited a farm on a class trip. They saw 2 pigs and 6 chickens. What fraction of the animals were pigs? What fraction of the animals were chickens?





$\underline{2}$ out of $\frac{8}{2}$ are pigs: $\frac{\boxed{2}}{\frac{8}{8}}$ of the animals are pigs
6 out of $\frac{8}{2}$ are chickens: $\frac{\boxed{6}}{\boxed{8}}$ of the animals are chickens
2.)


3 out of $\frac{6}{}$ are squares: $\frac{\boxed{3}}{\boxed{6}}$ of the shapes are squares 3 out of $\frac{6}{2}$ are stars: $\frac{\boxed{y}}{\boxed{3}}$ of the shapes are stars

## Module FM <br> Lesson 6 Practice Key

Write a fraction for each set.
3.)







$\frac{7}{7}$ out of $\frac{8}{\square}$ are circles: $\frac{\boxed{7}}{\boxed{8}}$ of the shapes are circles
1 out of $\frac{8}{1}$ are triangles: $\frac{\boxed{1}}{\boxed{8}}$ of the shapes are triangles

Find the equal share.
1.) 3 friends share 2 candy bars equally.


Equal share:


Write a fraction for each set.
2.)

____ out of ____ are hamburgers: $\frac{\square}{\square}$ of the items are hamburgers


Write a fraction for each set.
3.)

____ out of ____ are puppies: $\frac{\square}{\square}$ of the animals are puppies
___ out of $\qquad$ are kittens:

4.)

____ out of ____ are apples: $\frac{\square}{\square}$ of the fruit are apples
out of $\qquad$ are bananas:

5.) Choose the picture that shows $\frac{3}{4}$ of the tools are hammers.



Find the equal share.
1.) 3 friends share 2 candy bars equally.


Write a fraction for each set.
2.)


2 out of $\frac{6}{2}$ are hamburgers: $\frac{\boxed{2}}{\boxed{6}}$ of the items are hamburgers
$\frac{4}{4}$ out of $\frac{6}{}$ are hot dogs: $\frac{\boxed{4}}{\boxed{6}}$ of the items are hot dogs

Write a fraction for each set.

## Module FM <br> Lesson 6 Independent Practice Key

3.)

$\underline{2}$ out of $\frac{3}{2}$ are puppies: $\frac{\boxed{2}}{\boxed{2}}$ of the animals are puppies
$\ldots$ out of $\frac{3}{1}$ are kittens: $\frac{\boxed{1}}{\boxed{1}}$ of the animals are kittens
4.)


5 out of $\frac{6}{2}$ are apples: $\frac{\boxed{5}}{\boxed{6}}$ of the fruit are apples
1 out of $\frac{6}{}$ are bananas: $\frac{\boxed{1}}{\boxed{6}}$ of the fruit are bananas
5.) Choose the picture that shows $\frac{3}{4}$ of the tools are hammers.


C


D


Module FM
Lesson 7
Engaged Practice Key
4 students want to share 3 sandwiches equally. How much
of a sandwich does each student receive?

## Module FM <br> Lesson 7

6 friends shared 5 ribbons equally. Here is an equal share:


Locate the fraction on the number line.
Equal share: $\qquad$

8 friends share 5 licorice ropes. The equal share is $\frac{5}{8}$ of a licorice rope. Locate the fraction on the number line.


6 friends shared 5 sandwiches equally. Here is an equal share:


Locate the fraction on the number line.
Equal share: five-sixths or $\frac{5}{6}$ of a sandwich

8 friends share 5 licorice ropes. The equal share is $\frac{5}{8}$ of a licorice rope. Locate the fraction on the number line.


Locate and label the fraction on the number line.
1.) 4 friends share 2 feet of rope equally. Here is an equal share:


Equal share: $\qquad$
2.) 8 people share 6 sandwiches equally. Here is an equal share:


Equal share: $\qquad$

Locate and label the fraction on the number line.
3.) 6 friends share 3 candy bars equally. The equal share is $\frac{3}{6}$ of a candy bar.


Locate and label the fraction on the number line.
1.) 4 friends share 2 feet of rope equally. Here is an equal share:


Equal share: two-fourths or $\frac{2}{4}$ of a foot of rope
2.) 8 people share 6 sandwiches equally. Here is an equal share:


Equal share: six-eighths or $\frac{6}{8}$ of a sandwich

Locate and label the fraction on the number line.
3.) 6 friends share 3 candy bars equally. The equal share is $\frac{3}{6}$ of a candy bar.


Write a fraction for each set.
1.)

$\qquad$
$\qquad$ are bees:
 ____ out of ____ are ladybugs: $\frac{\square}{\square}$ of the insects are ladybugs

$\qquad$
$\qquad$ are pears:

$\qquad$ out of $\qquad$ are strawberries:

3.) Choose the picture that shows $\frac{5}{8}$ of the desserts are ice cream cones.
A


B

D

Locate and label the fraction on the number line.
4.) 3 friends share 2 taffy bars equally. Here is an equal share:

5.) 6 workers share 5 chocolate bars equally. The equal share is $\frac{5}{6}$ of a chocolate bar.

6.) 8 students share 3 sandwiches equally. Choose the number line that shows the equal share, $\frac{3}{8}$ of a sandwich.

A


B


C


D


Write a fraction for each set.
1.)

$\underline{2}$ out of $\frac{4}{4}$ are bees: $\frac{\boxed{2}}{\boxed{4}}$ of the insects are bees
$\underline{2}$ out of $\frac{4}{}$ are ladybugs: $\frac{\boxed{2}}{\boxed{4}}$ of the insects are ladybugs
2.)


4 out of $\frac{6}{4}$ are pears: $\frac{4}{\square 6}$ of the fruits are pears
2 out of $\frac{6}{2}$ are strawberries: $\frac{\boxed{2}}{\boxed{6}}$ of the fruits are strawberries
3.) Choose the picture that shows $\frac{5}{8}$ of the desserts are ice cream cones.
A

C

B

D


## Module FM <br> Lesson 7 <br> Independent Practice Key

Locate and label the fraction on the number line.
4.) 3 friends share 2 taffy bars equally. Here is an equal share:

5.) 6 workers share 5 chocolate bars equally. The equal share is $\frac{5}{6}$ of a chocolate bar.


## Module FM <br> Lesson 7 Independent Practice Key

6.) 8 students share 3 sandwiches equally. Choose the number line that shows the equal share, $\frac{3}{8}$ of a sandwich.

A

(B)


C


D

1.) Write the fraction for the parts shaded.

2.) Shade the model to represent the fraction.

3.)

4.) 4 friends share 3 loaves of bread. Shade and label the number line to show the equal share $\frac{3}{4}$ of a loaf of bread.


## Module FM <br> Lesson 8 Engaged Practice Key

1.) Write the fraction for the parts shaded.

2.) Shade the model to represent the fraction.

$$
\frac{5}{8}
$$


3.) $\frac{3}{\square .6}$ of the objects are balloons

4.) 4 friends share 3 loaves of bread. Shade and label the number line to show the equal share $\frac{3}{4}$ of a loaf of bread.


STOP

3 friends want to share 3 sandwiches equally. Each friend wants a piece of each sandwich. What would an equal share look like?

Tuna


Ham


Peanut Butter


Equal share: $\qquad$

How many $\frac{1}{2}$ pieces fit in 1 whole sandwich?


How many $\frac{1}{4}$ pieces fit in 1 whole sandwich?


$\qquad$


What fraction of the shapes are squares?

___ out of $\qquad$ are squares


What fraction on the number line equals 1 whole? Shade and fill in the blanks.


3 friends want to share 3 sandwiches equally. Each friend wants a piece of each sandwich. What would an equal share look like?
Tuna
Ham
Peanut Butter


Equal share: $\frac{3}{3}$ of a sandwich

How many $\frac{1}{2}$ pieces fit in 1 whole sandwich?


## $\frac{2}{2}$ of a sandwich

How many $\frac{1}{4}$ pieces fit in 1 whole sandwich?

Module FM
Lesson 8
Modeled Practice Display \#2 Key


은

What fraction of the shapes are squares?


6 out of 6 are squares


What fraction on the number line equals 1 whole? Shade and fill in the blanks.


Use the models to find the equal share.
1.) 3 friends want to share 3 different kinds of taffy equally. What would the equal share look like?

Equal share:

2.) What fraction of the shapes are shaded?

3.) What fraction on the number line equals 1 whole? Shade and fill in the blanks.


Use the models to find the equal share.
1.) 3 friends want to share 3 different kinds of taffy equally. What would the equal share look like?

Equal share:

2.) What fraction of the shapes are shaded?

3.) What fraction on the number line equals 1 whole? Shade and fill in the blanks.


Write a fraction for the set.
1.)

___ out of $\qquad$ are forks:

____ out of ___ are spoons: $\frac{\square}{\square}$ of the items are spoons

Locate the fraction on the number line.
2.) 3 friends share 2 sandwiches equally. Here is an equal share:


Equal share: $\qquad$
3.) 4 friends share 2 hot dogs equally. Shade and label the number line to show the equal share $\frac{2}{4}$ of a hot dog.


Find the equal share.
4.) 2 children share 2 cupcakes equally. What would an equal share look like? Equal share:


Write a fraction for the set.
5.) What fraction of the shapes have corners?

out of $\qquad$ have corners

Shade and fill in the boxes.
6.) What fraction on the number line equals 1 whole?

7.) Choose the model that does not show 1 whole.
A

C

$\frac{3}{3}$ are circles

D


Write a fraction for the set.
1.)


4 out of $\frac{6}{4}$ are forks: $\frac{\boxed{4}}{\boxed{6}}$ of the items are forks
2 out of $\frac{6}{2}$ are spoons: $\frac{\boxed{2}}{\boxed{6}}$ of the items are spoons

Locate the fraction on the number line.
2.) 3 friends share 2 sandwiches equally. Here is an equal share:


Equal share: $\frac{2}{3}$ of a sandwich

## Module FM <br> Lesson 8 Independent Practice Key

3.) 4 friends share 2 hot dogs equally. Shade and label the number line to show the equal share $\frac{2}{4}$ of a hot dog.


Find the equal share.
4.) 2 children share 2 cupcakes equally. What would an equal share look like?

Equal share:


## $\frac{2}{2}$ of a cupcake

Write a fraction for the set.
5.) What fraction of the shapes have corners?


4 out of 4 have corners
$\frac{4}{4}$ (4 of the shapes have corners

## Module FM <br> Lesson 8 Independent Practice Key

Shade and fill in the boxes.
6.) What fraction on the number line equals 1 whole?

7.) Choose the model that does not show 1 whole.


C


$\frac{3}{3}$ are circles


Match the fraction with the fraction word.

| one-third | $\frac{3}{4}$ |
| :--- | :--- |
| $\frac{6}{8}$ | two-halves |
| four-eighths | $\frac{5}{6}$ |
| $\frac{1}{6}$ | six-eighths |
| three-fourths | $\frac{1}{3}$ |
| $\frac{2}{2}$ | one-sixth |

Match the fraction with the fraction word.

$$
\frac{3}{8} \longrightarrow \text { three-eighths }
$$







intervention



Module FM
Lesson 9
Modeled Practice \#4 Key


3

Write a fraction and name it for each model.
1.) An equal share of a candy bar:

$\square$ parts being described
" $\qquad$ of a candy bar"
parts in the whole
2.) What fraction of the shapes are squares?

3.) What is the length of the rope?

$\qquad$ parts in the whole

Write a fraction and name it for each model.

## Module FM

1.) An equal share of a candy bar:

$\square$ parts being described "_one-third of a candy bar"
3 parts in the whole
2.) What fraction of the shapes are squares?


| 7 |
| :--- |
| 8 |
| parts being described " seven-eighths |
| squares" | 8 parts in the whole

3.) What is the length of the rope?
 parts being described "the rope is $\qquad$ of a foot

Find the equal share.
1.) 4 friends share 1 sandwich equally. Here is an equal share:


Locate the fraction on the number line.

Equal share: $\qquad$
2.) 4 children share 4 cupcakes equally. What would an equal share look like? Equal share:

3.) 6 friends share 2 hot dogs equally. Shade and label the number line to show the equal share $\frac{2}{6}$ of a hot dog.


Write a fraction and name it for each model.
4.) An equal share of a brownie:

$\square$ parts being described " $\qquad$ of a brownie"
5.) What fraction of the shapes are hearts?

$\square$ parts being described " $\qquad$ of the shapes are parts in the whole hearts"
6.) What is the length of the string?

"the string is $\qquad$ of a foot parts in the whole
7.) Choose the fraction that has 4 in the numerator.

A $\frac{2}{4}$

B $\frac{4}{8}$

C $\frac{3}{6}$

D $\frac{1}{8}$

Find the equal share.
1.) 4 friends share 1 sandwich equally. Here is an equal share:


Locate the fraction on the number line.
Equal share: $\frac{1}{4}$ of a sandwich
2.) 4 children share 4 cupcakes equally. What would an equal share look like? Equal share:


## $\frac{4}{4}$ of a cupcake

3.) 6 friends share 2 hot dogs equally. Shade and label the number line to show the equal share $\frac{2}{6}$ of a hot dog.


## Module FM <br> Lesson 9 <br> Independent Practice Key

Write a fraction and name it for each model.
4.) An equal share of a brownie:


2 parts being described "_two-thirds of a brownie"
3 parts in the whole
5.) What fraction of the shapes are hearts?

6.) What is the length of the string?


## Module FM <br> Lesson 9 Independent Practice Key

7.) Choose the fraction that has 4 in the numerator.

A $\frac{2}{4}$
(B) $\frac{4}{8}$

C $\frac{3}{6}$

D $\frac{1}{8}$

Name the numerator and denominator of each model. Then, write the fraction.


Shaded parts of the whole
numerator $\qquad$
denominator $\qquad$

What is the fraction?


Squares in the set
numerator $\qquad$ denominator $\qquad$

What is the fraction? | $\square$ |
| :---: |
| $\square$ |



Shaded length on the number line
numerator $\qquad$
denominator $\qquad$

What is the fraction?


Name the numerator and denominator of each model. Then, write the fraction.


Shaded parts of the whole
numerator 2 denominator 4

What is the fraction? | $\boxed{2}$ |
| :--- |
| 4 |



Squares in the set
numerator 5
denominator 8
What is the fraction? $\frac{\square}{\square}$


Shaded length on the number line
numerator $\qquad$
denominator 8




## 



## $\stackrel{y}{2}-0$ <br> Module FM Lesson 10 Modeled Practice \#2 Key



Draw a model to solve.
1.) Rachel and Manuel want to draw a model to show that $\frac{2}{8}$ of the shapes are squares. What model could they use: an area model, a set model, or a number line? Draw $\frac{2}{8}$ with the model you choose.

Draw a model of the fraction.

3.)


Draw a model to solve.
1.) Rachel and Manuel want to draw a model to show that $\frac{2}{8}$ of the shapes are squares. What model could they use: an area model, a set model, or a number line? Draw $\frac{2}{8}$ with the model you choose.


## Answers will vary depending on model chosen.

Draw a model of the fraction.
2.)

| Fraction | Area Model |  | Set Model |
| :---: | :---: | :---: | :---: |
| $\frac{3}{4}$ |  |  |  |

3.)


Write a fraction and name it for each model.
1.) An equal share of a sandwich:

$\square$ parts being described " $\qquad$ of a sandwich"
2.) What fraction of the shapes are stars?

$\square$

3.) What is the length of the rope?

$\qquad$ parts in the whole

Draw a model of the fraction.
4.)

| Fraction | Area Model |
| :---: | :---: |
| $\frac{1}{2}$ |  |
|  |  | Set Model

5.)

6.) Choose the model that does not show $\frac{5}{8}$.
A

C

D


B


Write a fraction and name it for each model.
1.) An equal share of a sandwich:


2 parts being described " two-fourths of a sandwich" 4 parts in the whole
2.) What fraction of the shapes are stars?

$\square$

3.) What is the length of the rope?


7 parts being described "the rope is seven-eighths of a foot
8 parts in the whole long"


Draw a model of the fraction.
4.)

| Fraction | Area Model |
| :---: | :---: |
| $\frac{1}{2}$ |  |
|  |  |


5.)

6.) Choose the model that does not show $\frac{5}{8}$.
A

(C)


D


Shade each cupcake model a different color. Shade the models below to represent the equal shares.

3 friends equally share 2 cupcakes equally. How much of a cupcake does each friend receive?

Cupcake 1


Cupcake 2



Friend 1


Friend 2


Friend 3

Equal share: $\qquad$

Shade each cupcake model a different color. Shade the models below to represent the equal shares.

3 friends equally share 2 cupcakes equally. How much of a cupcake does each friend receive?

Cupcake 1


Cupcake 2



Friend 1


Friend 2


Friend 3

Equal share: $\frac{\frac{2}{3}}{}$ of a cupcake

| Module FM |
| ---: |
| Lesson 11 |
| Modeled Practice Sheet \#1 | equally. What is 2 sandwiches share 2

Friend 2
Module FM
Lesson 11
Modeled Practice \#1 Key
equally. What is

 ?

$$
r
$$

2

Find the equal share.
1.) 6 friends equally share 3 chocolate bars, one at a time.

Chocolate Bar 1


Chocolate Bar 2


Chocolate Bar 3



Friend 1


Friend 2


Friend 3


Friend 4


Friend 5


Friend 6

Equal share: $\qquad$
2.) 6 friends equally share 3 chocolate bars another way.

Chocolate Bar 1


Chocolate Bar 2


Chocolate Bar 3



Friend 1


Friend 2


Friend 3


Friend 4


Friend 5


Friend 6

Equal share: $\qquad$

Match the equivalent fractions shown by the equal shares.


Find the equal share.
1.) 6 friends equally share 3 chocolate bars, one at a time.

Chocolate Bar 1


Chocolate Bar 2


Chocolate Bar 3



Friend 1


Friend 2


Friend 3


Friend 4


Friend 5


Friend 6

Equal share: $\frac{\frac{3}{6}}{6}$ of a chocolate bar
2.) 6 friends equally share 3 chocolate bars another way.

Chocolate Bar 1


Chocolate Bar 2


Chocolate Bar 3



Friend 1


Friend 2


Friend 3


Friend 4


Friend 5


Friend 6

## Module FM <br> Lesson 11 Practice Key

Match the equivalent fractions shown by the equal shares.

1.) What fraction of the shapes are circles?

$\square$ parts being described $\qquad$ of the shapes are circles" parts in the whole
2.)


Shade the models to find the equal share.
3.) 6 friends equally share 2 brownies.

Brownie 1


Brownie 2


Friend 3


Friend 4


Friend 5


Friend 6

Equal share: $\qquad$

Find the equal share.
4.) 6 friends equally share 2 brownies another way.



Friend 1


Friend 2

Brownie 2


Friend 3


Friend 4


Friend 5


Friend 6

Equal share: $\qquad$
5.) Choose the answer that shows an equivalent equal share for 6 people sharing 4 granola bars.

A


C

D


| Module FM |
| ---: |
| Lesson 11 |
| Independent Practice Key |

1.) What fraction of the shapes are circles?

2.)


Shade the models to find the equal share.
3.) 6 friends equally share 2 brownies.

Brownie 1



Friend 2

## Brownie 2



Friend 3


Friend 4


Friend 5


Friend 6

Equal share: $\frac{\frac{2}{6}}{6}$ of a brownie

## Module FM <br> Lesson 11 Independent Practice Key

Find the equal share.
4.) 6 friends equally share 2 brownies another way.


Brownie 2



Friend 1


Friend 2


Friend 3


Friend 4


Friend 5


Friend 6

Equal share: $\frac{\frac{1}{3}}{}$ of a brownie
5.) Choose the answer that shows an equivalent equal share for 6 people sharing 4 granola bars.


B


C


D


Label and match the equivalent fractions shown by the equal shares.


Label and match the equivalent fractions shown by the equal shares.



e

Compare the paper strips to find the equivalent fractions.
1.) Tucker says Hunter got more of the candy bar because Hunter got $\frac{4}{6}$ of a bar while Tucker only got $\frac{2}{3}$ of a bar. Is Tucker correct?

Shade the shapes below to support your answer.
2.) What fraction is equivalent to $\frac{2}{4}$ ? $\qquad$
3.) What fraction is equivalent to $\frac{2}{6}$ ? $\qquad$


Divide and shade the models to represent equivalent fractions. -|m


Compare the paper strips to find the equivalent fractions.
1.) Tucker says Hunter got more of the candy bar because Hunter got $\frac{4}{6}$ of a bar while Tucker only got $\frac{2}{3}$ of a bar. Is Tucker correct?

## No, they have the same amount.

Shade the shapes below to support your answer.

2.) What fraction is equivalent to $\frac{2}{4} ? \frac{1}{2}, \frac{3}{6}$, or $\frac{4}{8}$
3.) What fraction is equivalent to $\frac{2}{6}$ ? $\frac{1}{3}$
$\square$
1.) Draw 2 models of the given fraction.

| Fraction | Area Model | Set Model |
| :---: | :---: | :---: |
| $\frac{2}{4}$ |  |  |
|  |  |  |

2.) Find the equal share when 6 friends share 4 graham crackers.

Graham Cracker 1 Graham Cracker 2 Graham Cracker 3 Graham Cracker 4



Friend 1


Friend 2


Friend 3


Friend 4


Friend 5


Friend 6

Equal share: $\qquad$

## Module FM <br> Lesson 12 Independent Practice

3.) Find the equal share when 6 friends share 4 graham crackers, another way.



Friend 4


Friend 5


Friend 6

Equal share: $\qquad$

Compare the paper strips to find the equivalent fractions.
4.) Adam wants to run the $\frac{1}{2}$ mile race at the track meet because it is shorter than the $\frac{2}{4}$ mile race. Eli tells him it doesn't matter because the races are the same length. Who is correct?

Tucker says Hunter got more of the candy bar because Hunter got $\frac{4}{6}$ of a bar while Tucker only got $\frac{2}{3}$ of a bar. Is Tucker correct?

Shade the shapes below to support your answer.
5.) What fraction is equivalent to $\frac{1}{2}$ ? $\qquad$
6.) What fraction is equivalent to $\frac{2}{3}$ ? $\qquad$

## Module FM <br> Lesson 12 Independent Practice

7.) Choose the model that is not equivalent to $\frac{1}{2}$.
A

C


D

$\square$

## Module FM <br> Lesson 12 <br> Independent Practice Key

1.) Draw 2 models of the given fraction.

| Fraction | Area Model |  | Set Model |  |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{2}{4}$ | $\square$ |  |  |  |
|  |  |  | $\square$ | $O$ |

2.) Find the equal share when 6 friends share 4 graham crackers.

Graham Cracker 1 Graham Cracker 2 Graham Cracker 3 Graham Cracker 4



Friend 1


Friend 2


Friend 3


Friend 4


Friend 5


Friend 6 Equal share: $\frac{\frac{4}{6}}{6}$ of a graham cracker

3.) Find the equal share when 6 friends share 4 graham crackers, another way.

Graham Cracker 1 Graham Cracker 2 Graham Cracker 3 Graham Cracker 4



Friend 1


Friend 2


Friend 3


Friend 4


Friend 5


Friend 6

Equal share: $\frac{2}{3}$ of a graham cracker

## Module FM <br> Lesson 12 <br> Independent Practice Key

Compare the paper strips to find the equivalent fractions.
4.) Adam wants to run the $\frac{1}{2}$ mile race at the track meet because it is shorter than the $\frac{2}{4}$ mile race. Eli tells him it doesn't matter because the races are the same length. Who is correct?

Tucker says Hunter got more of the candy bar because Hunter got $\frac{4}{6}$ of a bar while Tucker only got $\frac{2}{3}$ of a bar. Is Tucker correct?

## No, they have the same amount.

Shade the shapes below to support your answer.

5.) What fraction is equivalent to $\frac{1}{2} ? \frac{2}{4}, \frac{3}{6}$, or $\frac{4}{8}$
6.) What fraction is equivalent to $\frac{2}{3}$ ? $\qquad$

## Module FM Lesson 12 Independent Practice Key

7.) Choose the model that is not equivalent to $\frac{1}{2}$.
A

C


D


166

## Module FM <br> Lesson 13 <br> Engaged Practice

Compare the paper strips to find the equivalent fractions.
1.) Raquel is sharing $\frac{1}{2}$ of a sandwich equally with her friends. How many pieces will she have if the whole sandwich is divided into 8 equal parts?

How do you know?

Shade the shapes below to support your answer.
$\square$

Compare the paper strips to find the equivalent fractions.
1.) Raquel is sharing $\frac{1}{2}$ of a sandwich equally with her friends. How many pieces will she have if the whole sandwich is divided into 8 equal parts? 4

How do you know?
$\frac{4}{8}$ is the same as $\frac{1}{2}$

Shade the shapes below to support your answer.




$=$


$\|$

Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.
1.)

2.)

3.)


Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.
1.)

2.)

3.)

1.) Find the equal share when 4 friends equally share 2 pizzas.

Pizza 2



Friend 1


Friend 2


Friend 3


Friend 4

Equal share: $\qquad$
2.) Find the equal share when 4 friends equally share 2 pizzas another way.



Friend 1


Friend 2

Pizza 2


Friend 3


Friend 4

Equal share: $\qquad$

Compare paper fraction strips to find the equivalent fractions.
3.) $\frac{2}{6}=\frac{\square}{\square}$
4.) $\frac{4}{8}=\frac{\square}{\square}$

Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.
5.)

6.)


Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.
7.)


8.) Choose the model that shows a fraction equivalent to $\frac{1}{4}$ of the pie, shown by the model below.

1.) Find the equal share when 4 friends equally share 2 pizzas.

2.) Find the equal share when 4 friends equally share 2 pizzas another way.



Friend 1


Friend 2


Friend 3


Friend 4

Equal share: $\underline{\frac{1}{2} \text { of a pizza }}$


Compare paper fraction strips to find the equivalent fractions.
3.) $\frac{2}{6}=\frac{\square}{\square 3}$
4.) $\frac{4}{8}=\frac{\square}{2}$ or $\frac{3}{6}$ or $\frac{2}{4}$

Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.
5.)

6.)



Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.
7.)


2


3
$=$

8.) Choose the model that shows a fraction equivalent to $\frac{1}{4}$ of the pie, shown by the model below.

A

C

B





Use the number lines labeled in Modeled Practice to answer the following questions.
1.) The length of Gina's pencil eraser is $\frac{3}{6}$ of a centimeter. What other fractions represent this length?
2.) Marcel ran a race that was $\frac{6}{8}$ of a mile long, but the length of the race was measured in quarters of a mile. What was the length of the race?

$$
\frac{6}{8}=\frac{\square}{\square} \text { of a mile }
$$

3.) The average rainfall in June is $\frac{6}{8}$ of an inch. How many sixths is this?

$$
\frac{1}{3}=\frac{\square}{\square} \text { of an inch }
$$

4.) Your hair grows more than $\frac{6}{8}$ of an inch per month. How long is this in eighths?

$$
\frac{1}{4}=\frac{\square}{\boxed{8}} \text { of an inch }
$$

Use the number lines labeled in Modeled Practice to answer the following questions.
1.) The length of Gina's pencil eraser is $\frac{3}{6}$ of a centimeter. What other fractions represent this length?
$\frac{1}{2}, \frac{2}{4}, \frac{4}{8}$
2.) Marcel ran a race that was $\frac{6}{8}$ of a mile long, but the length of the race was measured in quarters of a mile. What was the length of the race?

$$
\frac{6}{8}=\frac{\boxed{3}}{\boxed{4}} \text { of a mile }
$$

3.) The average rainfall in June is $\frac{6}{8}$ of an inch. How many sixths is this?

$$
\frac{1}{3}=\frac{\boxed{2}}{\boxed{6}} \text { of an inch }
$$

4.) Your hair grows more than $\frac{6}{8}$ of an inch per month. How long is this in eighths?

$$
\frac{1}{4}=\frac{\boxed{2}}{\boxed{8}} \text { of an inch }
$$

Use paper strips to answer the following question.
1.) Ray measured the amount of snow to be $\frac{4}{8}$ of an inch. The weatherman says there was $\frac{1}{2}$ an inch of snow. How accurate was Ray's measurement? $\qquad$

Shade the shapes below to support your answer.

Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.
2.)

3.)

$=$


Use the number lines labeled in Modeled Practice to answer the following questions.
4.) The length of Lucca's pencil eraser is $\frac{2}{6}$ of a centimeter. What other fraction represents this length?
5.) Sophia's walk to school is $\frac{2}{4}$ of a mile long. What other fraction could measure this distance?

$$
\frac{2}{4}=\frac{\square}{\square} \text { of a mile }
$$

6.) The average rainfall in September is $\frac{3}{4}$ of an inch. How many eighths is this?

$$
\frac{3}{4}=\frac{\square}{\square} \text { of an inch }
$$

7.) Olivia had her bangs trimmed $\frac{4}{8}$ of an inch. How much is this in fourths?

$$
\frac{4}{8}=\frac{\square}{\square} \text { of an inch }
$$

## Module FM <br> Lesson 14

8.) Choose the number line that shows a fraction equivalent to $\frac{1}{3}$.


A


B


C


D


Use paper strips to answer the following question.
1.) Ray measured the amount of snow to be $\frac{4}{8}$ of an inch. The weatherman says there was $\frac{1}{2}$ an inch of snow. How accurate was Ray's measurement? Exactly the same

Shade the shapes below to support your answer.


Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.
2.)

3.)


## Module FM <br> Lesson 14 <br> Independent Practice Key

Use the number lines labeled in Modeled Practice to answer the following questions.
4.) The length of Lucca's pencil eraser is $\frac{2}{6}$ of a centimeter. What other fraction represents this length? $\frac{1}{3}$
5.) Sophia's walk to school is $\frac{2}{4}$ of a mile long. What other fraction could measure this distance?

$$
\frac{2}{4}=\frac{\square}{\boxed{2}} \text { of a mile }
$$

6.) The average rainfall in September is $\frac{3}{4}$ of an inch. How many eighths is this?

$$
\frac{3}{4}=\frac{\boxed{6}}{\boxed{8}} \text { of an inch }
$$

7.) Olivia had her bangs trimmed $\frac{4}{8}$ of an inch. How much is this in fourths?

$$
\frac{4}{8}=\frac{2}{\boxed{4}} \text { of an inch }
$$

## Module FM <br> Lesson 14 Independent Practice Key

8.) Choose the number line that shows a fraction equivalent to $\frac{1}{3}$.


A


B


C


Draw a model that represents the fraction.
1.) $\frac{1}{3}$

2.) $\frac{1}{6}$

3.) $\frac{1}{4}$

4.) $\frac{1}{2}$

5.) $\frac{1}{8} \quad(-+--1+1$

Draw a model that represents the fraction.
1.) $\frac{1}{3}$

2.) $\frac{1}{6}$

3.) $\frac{1}{4}$

4.) $\frac{1}{2}$

5.) $\frac{1}{8}$


Yessica has 1 cake to share with friends. Will each person get more if she shares the cake equally with 2 friends or 4 friends?

Share with 2 friends:


Tony ran $\frac{1}{6}$ of a mile. Javier ran $\frac{1}{3}$ of a mile. Who ran the farthest?

> Tony
$\frac{1}{6}$ of a mile


Javier
$\frac{1}{3}$ of a mile

$\qquad$ ran the farthest.


## Module FM <br> Lesson 15 <br> Modeled Practice \#1 Key

Yessica has 1 cake to share with friends. Will each person get more if she shares the cake equally with 2 friends or 4 friends?

Share with 2 friends:


Share with 2 friends:


Tony ran $\frac{1}{6}$ of a mile. Javier ran $\frac{1}{3}$ of a mile. Who ran the farthest?


Javier


Javier ran the farthest.


Divide and shade each area model to represent the fraction shown to the right of the rectangle.


As the denominator gets $\qquad$ the size of the parts get

Use the area models from Practice to compare the following fractions. Write < (less than), or > (greater than) in the circle.
1.) Noah says he got less of the sandwich than his sister did because he has $\frac{1}{3}$ and she has $\frac{1}{8}$. He says $\frac{1}{3}$ is less than $\frac{1}{8}$ because 3 is less than 8. Is Noah correct? $\qquad$ $\frac{1}{3} \bigcirc \frac{1}{8}$
2.) Amanda has $\frac{1}{2}$ of the sandwich. Rory has $\frac{1}{8}$ of the sandwich. Does Amanda have more or less of the sandwich than Rory?
$\frac{1}{2} \bigcirc \frac{1}{8}$
3.) Leslie grew $\frac{1}{3}$ of an inch over the summer. Hillary grew $\frac{1}{4}$ of an inch. Did Leslie grow more or less than Hillary? $\qquad$
$\frac{1}{3} \bigcirc \frac{1}{4}$
4.) Levi rode his bicycle $\frac{1}{6}$ of a mile to school. Rosie rides $\frac{1}{2}$ of a mile. Who rides further to school? $\qquad$ $\frac{1}{6} \bigcirc \frac{1}{2}$

Divide and shade each area model to represent the fraction shown to the right of the rectangle.


As the denominator gets $\qquad$ the size of the parts get smaller

Use the area models from Practice to compare the following fractions. Write < (less than), or > (greater than) in the circle.
1.) Noah says he got less of the sandwich than his sister did because he has $\frac{1}{3}$ and she has $\frac{1}{8}$. He says $\frac{1}{3}$ is less than $\frac{1}{8}$ because 3 is less than 8. Is Noah correct? No $\frac{1}{3}>\frac{1}{8}$
2.) Amanda has $\frac{1}{2}$ of the sandwich. Rory has $\frac{1}{8}$ of the sandwich. Does Amanda have more or less of the sandwich than Rory?

More $\frac{1}{2} \geqslant \frac{1}{8}$
3.) Leslie grew $\frac{1}{3}$ of an inch over the summer. Hillary grew $\frac{1}{4}$ of an inch. Did Leslie grow more or less than Hillary? $\qquad$ $\frac{1}{3}<\frac{1}{4}$
4.) Levi rode his bicycle $\frac{1}{6}$ of a mile to school. Rosie rides $\frac{1}{2}$ of a mile. Who rides further to school?

$$
\frac{1}{6} \bigodot \frac{1}{2}
$$

Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.
1.)

2.) Ava ran a race that was $\frac{2}{4}$ of a mile long, but the length of the race was measured by the half mile. What was the length of the race?

$$
\frac{2}{4}=\frac{\square}{\square} \text { of a mile }
$$

3.) The length of the worm Lucy found in her back yard is $\frac{2}{3}$ of an inch. How many sixths is this?

$$
\frac{2}{3}=\frac{\square}{\square} \text { of an inch }
$$

## Module FM <br> Lesson 15 <br> Independent Practice

Use the area models from Practice to compare the following fractions. Write < (less than), or > (greater than) in the circle.
4.) On Thursday, it rained $\frac{1}{6}$ of an inch. On Friday, it rained $\frac{1}{4}$ of an inch. Did it rain more or less on Thursday than on Friday?

5.) Grace received $\frac{1}{2}$ of the brownie. Her brother received $\frac{1}{8}$ of the brownie. Does Grace get more or less of the brownie than her brother?

$$
\frac{1}{2} \bigcirc \frac{1}{8}
$$

Write < (less than), or > (greater than) in the circle.
6.) $\frac{1}{4} \bigcirc \frac{1}{3}$
7.) $\frac{1}{8} \bigcirc \frac{1}{6}$
8.) $\frac{1}{2} \bigcirc \frac{1}{4}$

## Module FM <br> Lesson 15 Independent Practice

9.) Choose the letter that shows the fractions compared correctly. Remember, < means "less than" and > means "greater than".
A $\frac{1}{8}>\frac{1}{3}$
C $\frac{1}{4}>\frac{1}{6}$
B $\frac{1}{3}>\frac{1}{2}$
D $\frac{1}{2}<\frac{1}{6}$

Label the fraction shown by the area model. Divide, shade, and label the equivalent fraction.
1.)

2.) Ava ran a race that was $\frac{2}{4}$ of a mile long, but the length of the race was measured by the half mile. What was the length of the race?

$$
\frac{2}{4}=\frac{\boxed{1}}{\boxed{2}} \text { of a mile }
$$

3.) The length of the worm Lucy found in her back yard is $\frac{2}{3}$ of an inch. How many sixths is this?

$$
\frac{2}{3}=\frac{4}{\boxed{6}} \text { of an inch }
$$

## Module FM <br> Lesson 15 <br> Independent Practice Key

Use the area models from Practice to compare the following fractions. Write < (less than), or > (greater than) in the circle.
4.) On Thursday, it rained $\frac{1}{6}$ of an inch. On Friday, it rained $\frac{1}{4}$ of an inch. Did it rain more or less on Thursday than on Friday?
$\frac{1}{6}<\frac{1}{4}$
5.) Grace received $\frac{1}{2}$ of the brownie. Her brother received $\frac{1}{8}$ of the brownie. Does Grace get more or less of the brownie than her brother?

## More

$$
\frac{1}{2} \geqslant \frac{1}{8}
$$

Write < (less than), or > (greater than) in the circle.
6.) $\frac{1}{4}<\frac{1}{3}$
7.) $\frac{1}{8}<\frac{1}{6}$
8.) $\frac{1}{2} \geqslant \frac{1}{4}$

## Module FM <br> Lesson 15 Independent Practice Key

9.) Choose the letter that shows the fractions compared correctly. Remember, < means "less than" and > means "greater than".
A $\frac{1}{8}>\frac{1}{3}$
(C) $\frac{1}{4}>\frac{1}{6}$
B $\frac{1}{3}>\frac{1}{2}$
D $\frac{1}{2}<\frac{1}{6}$

## Module FM <br> Lesson 16



With a unit fraction, the $\qquad$ the denominator, the
$\qquad$ the fractional part.


Margaret received $\frac{2}{6}$ of a cereal bar, while Sara received $\frac{4}{6}$ of a cereal bar. Did Margaret get more or less than Sara?

Margaret


Sara


$$
\frac{2}{6} \bigcirc \frac{4}{6}
$$

Margaret got $\qquad$ of the cereal bar than Sara.

Ana's shoe is $\frac{5}{8}$ of a foot long. Her brother's shoe is $\frac{2}{8}$ of a foot long. Who has the bigger shoe?

Ana


Brother


$$
\frac{5}{8} \bigcirc \frac{2}{8}
$$



Is $\frac{1}{4}$ of a circle greater than or less than $\frac{3}{4}$ of this circle?


$$
\frac{1}{4} \bigcirc \frac{3}{4}
$$

Margaret received $\frac{2}{6}$ of a cereal bar, while Sara received $\frac{4}{6}$ of a cereal bar. Did Margaret get more or less than Sara?


Sara


$$
\frac{2}{6} \bigodot \frac{4}{6}
$$

$\qquad$ less of the cereal bar than Sara.

## Module FM <br> Lesson 16 <br> Modeled Practice \#2 Key

Ana's shoe is $\frac{5}{8}$ of a foot long. Her brother's shoe is $\frac{2}{8}$ of a foot long. Who has the bigger shoe?

Ana


Brother


$$
\frac{5}{8} \circlearrowright \frac{2}{8}
$$

## Module FM

Is $\frac{1}{4}$ of a circle greater than or less than $\frac{3}{4}$ of this circle?


$$
\frac{1}{4}<\frac{3}{4}
$$

Shade the models to compare the fractions and answer the questions. Write < or > in the circle.
1.) Jackson ate $\frac{1}{3}$ of the cake on Wednesday and $\frac{2}{3}$ of the cake on Saturday. Did he eat more or less cake on Wednesday than on Saturday?


$$
\frac{1}{3} \bigcirc \frac{2}{3}
$$



Jackson ate $\qquad$ cake on Wednesday.
2.) Andrea spent $\frac{2}{4}$ of the $\$ 10$ her mother gave her. Her brother spent $\frac{1}{4}$ of the same amount. Did Andrea spend more or less money than her brother?


$$
\frac{2}{4} \bigcirc \frac{1}{4}
$$


$\qquad$ money than her brother.


Shade and label a fraction of your choice with the given denominator. Then compare fractions with your partner.
1.)


8

2.)


4

3.)


Shade the models to compare the fractions and answer the questions. Write < or > in the circle.
1.) Jackson ate $\frac{1}{3}$ of the cake on Wednesday and $\frac{2}{3}$ of the cake on Saturday. Did he eat more or less cake on Wednesday than on Saturday?


$$
\frac{1}{3} \bigodot \frac{2}{3}
$$



Jackson ate $\qquad$ cake on Wednesday.
2.) Andrea spent $\frac{2}{4}$ of the $\$ 10$ her mother gave her. Her brother spent $\frac{1}{4}$ of the same amount. Did Andrea spend more or less money than her brother?


Andrea spent $\qquad$ more money than her brother.

Shade and label a fraction of your choice with the given denominator. Then compare fractions with your partner.
1.)


## answers will vary

2.)

answers will vary
3.)


Use the number line to compare the fractions.
1.) $\frac{4}{6}=\frac{\square}{\square}$ of a mile


Use the Area Model mat to compare the following fractions. Write < (less than), or > (greater than) between the fractions.
2.) Luke's sister says he got more of the cookie than her because he ate $\frac{1}{6}$ and she ate $\frac{1}{2}$. She says is less than because $\frac{1}{2}$ is less than $\frac{1}{6}$. Is Luke's sister correct? $\qquad$ $\frac{1}{6} \bigcirc \frac{1}{2}$

Write < (less than), or > (greater than) between the fractions.
3.) $\frac{1}{4} \bigcirc \frac{1}{3}$
4.) $\frac{1}{2} \bigcirc \frac{1}{8}$

Shade the models to compare the fractions and answer the questions. Write < or > in the circle.
5.) Ella ate $\frac{5}{6}$ of her sandwich on Friday and $\frac{3}{6}$ of her sandwich on Monday. Did she eat more or less of her sandwich on Friday or Monday?


Ellie ate $\qquad$ of her sandwich on Friday.
6.) Miles grew $\frac{2}{8}$ of an inch this year. His friend Parker grew $\frac{3}{8}$ of an inch. Did Miles grow more or less than Parker?


Miles grew $\qquad$ than Parker.
7.) Choose ALL of the fractions that are less than $\frac{3}{6}$.

A $\frac{4}{6}$

B $\frac{2}{6}$
C $\frac{1}{6}$

D $\frac{5}{6}$

\section*{| Module FM |
| ---: |
| Lesson 16 |
| Independent Practice Key |}

Use the number line to compare the fractions.
1.) $\frac{4}{6}=\frac{2}{3}$ of a mile


Use the Area Model mat to compare the following fractions. Write < (less than), or > (greater than) between the fractions.
2.) Luke's sister says he got more of the cookie than her because he ate $\frac{1}{6}$ and she ate $\frac{1}{2}$. She says is less than because $\frac{1}{2}$ is less than $\frac{1}{6}$. Is Luke's sister correct? $\qquad$ $\frac{1}{6}<\frac{1}{2}$

Write < (less than), or > (greater than) between the fractions.
3.) $\frac{1}{4}<\frac{1}{3}$
4.) $\frac{1}{2} \oslash \frac{1}{8}$

## Module FM <br> Lesson 16 Independent Practice Key

Shade the models to compare the fractions and answer the questions. Write < or > in the circle.
5.) Ella ate $\frac{5}{6}$ of her sandwich on Friday and $\frac{3}{6}$ of her sandwich on Monday. Did she eat more or less of her sandwich on Friday or Monday?


Ellie ate $\qquad$ of her sandwich on Friday.
6.) Miles grew $\frac{2}{8}$ of an inch this year. His friend Parker grew $\frac{3}{8}$ of an inch. Did Miles grow more or less than Parker?


Miles grew $\qquad$ less than Parker.

## Module FM <br> Lesson 16 Independent Practice Key

7.) Choose ALL of the fractions that are less than $\frac{3}{6}$.

A $\frac{4}{6}$
(B) $\frac{2}{6}$
(C) $\frac{1}{6}$

D $\frac{5}{6}$

Shade the fractions. Then compare fractions.
1.)

$$
\frac{1}{4} \bigcirc \frac{3}{4}
$$


2.)

$$
\begin{aligned}
& \frac{5}{8} \bigcirc \frac{2}{8} \\
& \frac{5}{8}
\end{aligned}
$$

$\frac{2}{8}$


Shade the fractions. Then compare fractions.
1.)


2.)

$\frac{2}{8}$


$\frac{3}{4}$



$$
\frac{2}{3} \geqslant \frac{2}{6}
$$



$$
\frac{3}{8}<\frac{3}{4}
$$


1.) Rory told his little sister she could have $\frac{5}{6}$ or $\frac{5}{8}$ of his candy bar. He said she should choose $\frac{5}{8}$ because the number is larger, and she will get a bigger share. Circle the amount she should choose.

$$
\begin{aligned}
& \frac{5}{8} \bigcirc \frac{5}{6} \\
& \frac{5}{8} \quad\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \\
& \frac{5}{6} \quad\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

2.) Divide and shade the models. Write $<$ or $>$ in the circle.

$$
\frac{2}{3} \bigcirc \frac{2}{8}
$$

$\frac{2}{3}$

$\frac{2}{8}$

3.) Divide and shade the models. Write $<$ or $>$ in the circle.

$$
\frac{3}{6} \bigcirc \frac{3}{4}
$$


1.) Rory told his little sister she could have $\frac{5}{6}$ or $\frac{5}{8}$ of his candy bar. He said she should choose $\frac{5}{8}$ because the number is larger, and she will get a bigger share. Circle the amount she should choose.

$$
\frac{5}{8}<\frac{5}{6}
$$



2.) Divide and shade the models. Write $<$ or $>$ in the circle.

$$
\frac{2}{3} \oslash \frac{2}{8}
$$


3.) Divide and shade the models. Write $<$ or $>$ in the circle.

$$
\frac{3}{6} \bigodot \frac{3}{4}
$$



Shade the models to compare the fractions. Write < or > in the circle.
1.) Grace ate $\frac{1}{4}$ of the brownie. Her brother ate $\frac{1}{3}$ of of the brownie. Did Grace get more or less of the brownie than her brother?

$$
\frac{1}{4} \bigcirc \frac{1}{3}
$$


2.)

$$
\begin{aligned}
& \frac{2}{4} \bigcirc \frac{3}{4} \\
& \frac{2}{4}
\end{aligned}
$$

3.)

$$
\frac{1}{2} \bigcirc \frac{1}{8}
$$



Divide and shade the models. Write < or > in the circle.
4.)

5.)


## Module FM <br> Lesson 17 Independent Practice

6.) Choose the letter that does NOT show the fractions compared correctly. Remember < means "less than" and > means "greater than".
A $\frac{1}{8}>\frac{2}{8}$
C $\frac{3}{4}>\frac{3}{8}$
B $\frac{2}{3}>\frac{2}{6}$
D $\frac{5}{8}<\frac{5}{6}$

Shade the models to compare the fractions. Write < or > in the circle.
1.) Grace ate $\frac{1}{4}$ of the brownie. Her brother ate $\frac{1}{3}$ of of the brownie. Did Grace get more or less of the brownie than her brother?
$\frac{1}{4}<\frac{1}{3}$
$\frac{1}{4}\left(-\frac{1}{3}\right.$
2.)

$\frac{3}{4}$

3.)

$$
\frac{1}{2}>\frac{1}{8}
$$



## Module FM <br> Lesson 17 Independent Practice Key

Divide and shade the models. Write < or > in the circle.
4.)

5.)


## Module FM Lesson 17 Independent Practice Key

6.) Choose the letter that does NOT show the fractions compared correctly. Remember < means "less than" and > means "greater than".
(A) $\frac{1}{8}>\frac{2}{8}$
C $\frac{3}{4}>\frac{3}{8}$
B $\frac{2}{3}>\frac{2}{6}$
D $\frac{5}{8}<\frac{5}{6}$

## Module FM <br> Lesson 18

Divide and shade the model to compare the fractions.

Ethan bought $\frac{2}{4}$ of a pound of raisins and $\frac{2}{8}$ of a pound of walnuts. Did he buy more raisins or walnuts?

$$
\frac{2}{4} \bigcirc \frac{2}{8}
$$


$\qquad$ raisins than walnuts.

## Module FM <br> Lesson 18 Engaged Practice Key

Divide and shade the model to compare the fractions.

Ethan bought $\frac{2}{4}$ of a pound of raisins and $\frac{2}{8}$ of a pound of walnuts. Did he buy more raisins or walnuts?

$$
\frac{2}{4}>\frac{2}{8}
$$


$\qquad$ raisins than walnuts.

At the grocery store, Javier bought $\frac{2}{4}$ of a pound of blackberries. Marco bought $\frac{2}{8}$ of a pound of blackberries. Who bought more blackberries?

Javier


$$
\frac{2}{4} \bigcirc \frac{2}{8}
$$

Marco


Who bought more blackberries?

Javier needs to buy nails that are $\frac{3}{8}$ of an inch long. The ones he bought are $\frac{3}{6}$ of an inch long. Do the nails need to be shorter or longer than the ones he bought?


$$
\frac{3}{8} \bigcirc \frac{3}{6}
$$



## Module FM <br> Lesson 18 Modeled Practice Key

At the grocery store, Javier bought $\frac{2}{4}$ of a pound of blackberries. Marco bought $\frac{2}{8}$ of a pound of blackberries. Who bought more blackberries?

Javier


Marco

$\frac{2}{4} \geqslant \frac{2}{8}$

Who bought more blackberries? $\qquad$

Javier needs to buy nails that are $\frac{3}{8}$ of an inch long. The ones he bought are $\frac{3}{6}$ of an inch long. Do the nails need to be shorter or longer than the ones he bought?


$$
\frac{3}{8}<\frac{3}{6}
$$

Shade the number lines to compare the fractions. Write < or > in the circle.
1.) Emma's plant grew $\frac{2}{3}$ of an inch, while Owen's plant grew $\frac{2}{4}$ of an inch. Did Emma's plant grow more or less than Owen's?


$$
\frac{2}{3} \bigcirc \frac{2}{4}
$$



Emma's plant grew $\qquad$ than Owen's plant.
2.) Which piece of rope is longer: one that is $\frac{5}{8}$ of a foot long, or one that is $\frac{5}{6}$ of a foot long?


$$
\frac{5}{8} \bigcirc \frac{5}{6}
$$


$\qquad$ of a foot long is longer.

Circle the letter of the fraction that is greater in each pair. Write the circled letter on the line above the correct number to solve the riddle.

Question: Why was the math book sad?

2.)

3.)

4.)

5.)

6.)

7.)

8.)


Answer:
Because it had too many $\frac{}{3} \frac{}{8} \frac{}{1} \frac{-}{4} \frac{-}{2} \frac{1}{6}$

Shade the number lines to compare the fractions. Write <or > in the circle.
1.) Emma's plant grew $\frac{2}{3}$ of an inch, while Owen's plant grew $\frac{2}{4}$ of an inch. Did Emma's plant grow more or less than Owen's?


Emma's plant grew _ more than Owen's plant.
2.) Which piece of rope is longer: one that is $\frac{5}{8}$ of a foot long, or one that is $\frac{5}{6}$ of a foot long?


The rope that is $\frac{5}{6}$ of a foot long is longer.

Circle the letter of the fraction that is greater in each pair. Write the circled letter on the line above the correct number to solve the riddle.

Question: Why was the math book sad?

2.)

3.)

4.)

5.)

6.)

7.)

8.)


Answer:
Because it had too many $\frac{P}{3} \frac{R}{8} \frac{O}{1} \frac{B}{5} \frac{L}{4} \frac{E}{7} \frac{M}{2} \frac{S}{6}$ !

Divide and shade the models. Write < or > in the circle.
1.)

$$
\begin{gathered}
\frac{5}{6} \bigcirc \frac{4}{6} \\
\frac{5}{6} \begin{array}{llllll|}
\hline & 1 & 1 & 1 & 1 \\
i & 1 & 1 & 1 & 1 \\
i & 1 & 1 & 1 & 1 \\
\hline & 1 & i & 1 & 1 \\
\hline
\end{array}
\end{gathered}
$$


2.)


Shade the number lines to compare the fractions. Write < or > in the circle.
3.)


$$
\frac{1}{3} \bigcirc \frac{1}{4}
$$


4.)


$$
\frac{3}{8} \bigcirc \frac{3}{6}
$$


5.) Choose the fraction that is greater than $\frac{6}{8}$.

A $\frac{7}{8}$

B $\frac{2}{8}$

C $\frac{4}{8}$

D $\frac{5}{8}$

Divide and shade the models. Write < or > in the circle.
1.)

2.)


## Module FM <br> Lesson 18 <br> Independent Practice Key

Shade the number lines to compare the fractions. Write < or > in the circle.
3.)

4.)

5.) Choose the fraction that is greater than $\frac{6}{8}$.
(A) $\frac{7}{8}$

B $\frac{2}{8}$

C $\frac{4}{8}$

D $\frac{5}{8}$

Shade the number lines to compare the fractions. Write $<$ or $>$ in the circle.
1.)


$$
\frac{3}{6} \bigcirc \frac{3}{4}
$$


2.)

$\frac{2}{3} \bigcirc \frac{2}{8}$


## Module FM <br> Lesson 19 Engaged Practice Key

Shade the number lines to compare the fractions. Write < or > in the circle.
1.)

2.)


$$
\frac{2}{3} \geqslant \frac{2}{8}
$$

Cristi ordered $\frac{1}{2}$ of a pound of turkey and $\frac{1}{4}$ of a pound of cheese. Did she order more turkey or cheese?


$$
\frac{1}{2} \bigcirc \frac{1}{4}
$$

Cristi ordered more $\qquad$ .

Alan ate $\frac{3}{6}$ of a cake. Raul ate $\frac{3}{4}$ of a cake. Who ate the most cake?


$$
\frac{3}{6} \bigcirc \frac{3}{4}
$$

$\qquad$ ate the most cake.

The beetle is $\frac{7}{8}$ of an inch long, while the ant is $\frac{3}{8}$ of an inch long. Which insect is smaller?


The $\qquad$ is smaller.

## Module FM <br> Lesson 19 <br> Modeled Practice \#1 Key

Cristi ordered $\frac{1}{2}$ of a pound of turkey and $\frac{1}{4}$ of a pound of cheese. Did she order more turkey or cheese?


$$
\frac{1}{2}>\frac{1}{4}
$$

Cristi ordered more $\qquad$ .

## Module FM <br> Lesson 19

Alan ate $\frac{3}{6}$ of a cake. Raul ate $\frac{3}{4}$ of a cake. Who ate the most cake?


$$
\frac{3}{6}<\frac{3}{4}
$$

## Module FM <br> Lesson 19 <br> Modeled Practice \#3 Key

The beetle is $\frac{7}{8}$ of an inch long, while the ant is $\frac{3}{8}$ of an inch long. Which insect is smaller?

$\frac{7}{8} \geqslant \frac{3}{8}$


The $\qquad$ is smaller.

Divide and shade the models to compare the fractions. Write < or > in the circle.
1.) David bought $\frac{1}{8}$ of a pound of almonds and $\frac{1}{4}$ of a pound of rice. Did he buy more almonds or rice?


$$
\frac{1}{8} \bigcirc \frac{1}{4}
$$

David bought more $\qquad$ .
2.)

3.)


$$
\frac{2}{3} \bigcirc \frac{1}{3}
$$



Divide and shade the models to compare the fractions. Write < or > in the circle.
1.) David bought $\frac{1}{8}$ of a pound of almonds and $\frac{1}{4}$ of a pound of rice. Did he buy more almonds or rice?


David bought more $\qquad$ .
2.)


$$
\frac{2}{6}<\frac{2}{4}
$$

3.)


$$
\frac{2}{3} \geqslant \frac{1}{3}
$$



Divide and shade the models. Write < or > in the circle.
1.)

$$
\frac{1}{3} \bigcirc \frac{1}{8}
$$



Shade the number lines to compare the fractions. Write < or > in the circle.
2.)


$$
\frac{2}{6} \bigcirc \frac{2}{4}
$$


3.)


$$
\frac{3}{8} \bigcirc \frac{3}{6}
$$



Divide and shade the models. Write < or > in the circle.
4.)

$\frac{5}{6} \bigcirc \frac{4}{6}$
5.)

6.)

$\frac{2}{4} \bigcirc \frac{2}{8}$

7.) If the wholes are the same size, $\frac{6}{8}$ and $\frac{6}{8}$ $\qquad$ .

A have different sizes of parts in the whole.
B have the same number of shaded parts.
C have the different amounts shaded.
D have different wholes.

Divide and shade the models. Write < or > in the circle.
1.)

$$
\frac{1}{3}>\frac{1}{8}
$$



Shade the number lines to compare the fractions. Write < or > in the circle.
2.)

3.)


$$
\frac{3}{8}<\frac{3}{6}
$$




Divide and shade the models. Write < or > in the circle.
4.)


$$
\frac{5}{6} \geqslant \frac{4}{6}
$$

5.)

6.)


$$
\frac{2}{4} \geqslant \frac{2}{8}
$$



## Module FM <br> Lesson 19 Independent Practice Key

7.) If the wholes are the same size, $\frac{6}{8}$ and $\frac{6}{8}$ $\qquad$ .

A have different sizes of parts in the whole.
(B) have the same number of shaded parts.

C have the different amounts shaded.
D have different wholes.

Use a ruler to measure the lengths of the objects below.
1.)

$\qquad$ inches.
2.)

3.)

$\qquad$ inches.

Use a ruler to measure the lengths of the objects below.
1.)


5 inches.
2.)


2 inches.
3.)



Shade the length of the pencil on the ruler.


What whole numbers is the length between? $\qquad$ and $\qquad$ .

There are $\qquad$ equal parts between each whole number.

Each hash mark between the whole numbers represents


How many marks past 3 is the measurement? $\qquad$ marks.

The pencil is $\qquad$ inches long.


Shade the length of the scissors on the ruler.


What whole numbers is the length between? $\qquad$ and $\qquad$ .

There are $\qquad$ equal parts between each whole number.

Each part between the whole numbers represents


How many parts past 5 is the measurement? $\qquad$ part.
$\qquad$ inches long.

Andrea measured the pen below and says it is $5 \frac{3}{4}$ inches long. Is she correct? If not, what is the length of the pen?

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Module FM <br> Lesson 20 <br> Modeled Practice \#1 Key



Shade the length of the pencil on the ruler.


What whole numbers is the length between? $\qquad$ and $\qquad$ 4 .

There are 8 equal parts between each whole number.

Each hash mark between the whole numbers represents $\frac{\boxed{1}}{\boxed{1}}$.

How many marks past 3 is the measurement? 4 marks.
The pencil is $3 \frac{4}{8}$ or $3 \frac{1}{2}$ inches long.


Shade the length of the scissors on the ruler.


What whole numbers is the length between? 5 and 6 .

There are $\quad 8$ equal parts between each whole number.


How many parts past 5 is the measurement? _2_ part.
The scrissors are $5 \frac{2}{8}$ or $5 \frac{1}{4}$ inches long.

Andrea measured the pen below and says it is $5 \frac{3}{4}$ inches long. Is she correct? If not, what is the length of the pen?


The measurement is not correct because the beginning of the pen is lined up with 1 , not 0 . The correct length of the pen is $4 \frac{3}{4}$ inches long.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Measure the length of the protractor with your ruler.


Shade the length of the protractor on the ruler.


What whole numbers is the length between? $\qquad$ and $\qquad$ .

There are $\qquad$ equal parts between each whole number.

Each hash mark between the whole numbers represents


How many marks past 4 is the measurement? $\qquad$ part.

The protractor is $\qquad$ inches long.

Measure the length of the compass with your ruler.


Shade the length of the compass on the ruler.


What whole numbers is the length between? $\qquad$ and $\qquad$ .

There are $\qquad$ equal parts between each whole number.

Each hash mark between the whole numbers represents


How many marks past 2 is the measurement? $\qquad$ marks.
$\qquad$ inches long.

Record the measurements of the objects you measure with your partner. Estimate each measurement to the nearest $\frac{1}{8}$ of an inch.

| What is it? | How long is it? | How wide is it? |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Measure the length of the protractor with your ruler.


Shade the length of the protractor on the ruler.


What whole numbers is the length between? $\qquad$ and $\qquad$ .

There are 8 equal parts between each whole number.

Each hash mark between the whole numbers represents $\frac{\boxed{1}}{\boxed{1}}$.

How many marks past 4 is the measurement? $\qquad$ 3 part.

The protractor is $4 \frac{3}{8} \quad$ inches long.

Measure the length of the compass with your ruler.


Shade the length of the compass on the ruler.


What whole numbers is the length between? 2 and $\qquad$ .

There are $\quad 8$ equal parts between each whole number.

Each hash mark between the whole numbers represents $\frac{$| 1 |
| ---: |
| 8 | .}{\(\substack{ <br>

\hline}\)} .

How many marks past 2 is the measurement? _6_marks.
The compass is $2 \frac{6}{8}$ or $2 \frac{3}{4}$ inches long.

Record the measurements of the objects you measure with your partner. Estimate each measurement to the nearest $\frac{1}{8}$ of an inch. answers will vary

| What is it? | How long is it? | How wide is it? |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |

Shade the models to compare the fractions. Write < or > in the circle.
1.) Which is longer: a rope that is $\frac{2}{3}$ of a foot long, or one that is $\frac{2}{6}$ of a foot long?


$$
\frac{2}{3} \bigcirc \frac{2}{6}
$$


2.)

3.)

4.) Measure the width of the sphere with your ruler.


Shade the width of the sphere on the ruler.


What whole numbers is the width between? $\qquad$ and $\qquad$ .

There are $\qquad$ equal parts between each whole number.

Each hash mark between the whole numbers represents


How many marks past 2 is the measurement? $\qquad$ marks.

The diameter of the sphere is $\qquad$ inches long.
5.) Measure the height of the cylinder with your ruler.


Shade the height of the cylinder on the ruler.


What whole numbers is the height between? $\qquad$ and $\qquad$ .

There are $\qquad$ equal parts between each whole number.

Each part between the whole numbers represents $\frac{\square}{\square}$.
How many marks past 3 is the measurement? $\qquad$ marks.

The height of the cylinder is $\qquad$ inches long.

## Module FM <br> Lesson 20 <br> Independent Practice

6.) Use your ruler and choose the letter of the rectangle that is $5 \frac{1}{2}$ inches wide.

A


B $\square$

C $\square$

D $\square$

Shade the models to compare the fractions. Write < or > in the circle.
1.) Which is longer: a rope that is $\frac{2}{3}$ of a foot long, or one that is $\frac{2}{6}$ of a foot long?


$$
\frac{2}{3}<\frac{2}{6}
$$


2.)

$\frac{1}{4}<\frac{1}{2}$
3.)

8


$$
\frac{2}{8}<\frac{5}{8}
$$

## Module FM <br> Lesson 20 <br> Independent Practice Key

4.) Measure the width of the sphere with your ruler.


Shade the width of the sphere on the ruler.


What whole numbers is the width between? $\qquad$ 2 and $\qquad$ .

There are 8 equal parts between each whole number.

Each hash mark between the whole numbers represents $\frac{\boxed{~} 1 \text {. }}{\boxed{8}}$.

How many marks past 2 is the measurement? $\qquad$ marks.

The diameter of the sphere is $\qquad$ $2 \frac{1}{8}$ inches long.

5.) Measure the height of the cylinder with your ruler.


Shade the height of the cylinder on the ruler.


What whole numbers is the height between? $\qquad$ 3 and $\qquad$ 4 .

There are $\qquad$ 8 equal parts between each whole number.

Each part between the whole numbers represents $\frac{$| 1 |
| :--- |
| 8 |$.}{}$.

How many marks past 3 is the measurement? $\qquad$ 2 marks.
The height of the cylinder is $3 \frac{2}{8}$ or $3 \frac{1}{4}$ inches long.

6.) Use your ruler and choose the letter of the rectangle that is $5 \frac{1}{2}$ inches wide.

A


B $\square$

C $\square$
(D)


